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Abstract. Let u be an index a, 0 < a < 2, stable prob. measure on R4, the d-Euclidean :-'::;:
space. Let o be the spectral measure of x4 on the boundary of the unit sphere of R%; and :-i:':
assume that the support of ¢ is d-dimensional. Using known results about the support of "~

2

u, simple proofs are provided for the following two facts about the continuous bounded

o

density f, of g : (1) f1 < a < 2, then f, is positive on R?; (ii) if 0 < a < 1, then /{‘f-
fu(z) > 0 if and only if z belongs to the interior of the translated cone ag + Cp, where Cy :"w ,
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REMARKS ON THE POSITIVITY OF DENSITIES OF
STABLE PROBABILITY MEASURE ON R

BALRAM RAJPUT
1. Introduction and Preliminaries:. Let u be an index a, 0 < a < 2, stable prob.
méasure on RY, the d-Euchilidian space. Let o be the spectral measure of u on the boundry
of the unit sphere of R?%; and assume that the support of ¢ is d-dimensional. Using known
results about the support of y, simple proofs are provided for the following two facts
about the continuous bounded density f, of u : (i) f 1 < a < 2, then f, is positive
on R%;(i1) if 0 < a <1, then f,(z) > 0 if and only if z belongs to the interior of the
translated cone ag + Cp, where Cp is the smallest closed cone generated by the support of o,
and aq is the centering element of u. Both of these results are known, we learned this from
the unpublished manuscript of Kesten [4]. In this paper, he showed that if z belong to the
interior of ag + Cy then f,(z) > 0; the fact that f, vanished on the complement of ag + Cy
was shown earlier by Taylor [9). Kesten also proved a slightly weaker result than (i) for
the case 1 < a < 2; however, Fristedt mentioned in [3] that (ii) can be recovered from
Prot [5] and Taylor [8]. All these proofs seem quite lengthy and use, in a substential way,
the representation theory of Lévy processes. Kesten [4] asked if (i) and (ii) can be proved
using only the Fourier analytic methods. Our proof of (i) and (ii) use (via Theorem 2.1)
certain results from the theory of characterstic functions of measures on R? and also from
the theory of weak convergence; thus, though our proofs are not entirely based on Fourier
analytic methods, they seem more direct and simpler. In addition, we also consider the
analogs of (i) and (ii), when o is not d-dimensienzl; further, we discuss the orthogonality

and equivalence dichotomy for two stable probability measures on R? (Theorem 2.6).
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In the rest of this section we include necessary notation and some difinitions.
Let v be a finite measure on the Borel o0—algebra of a separable metric space B, then

S., the support of v, is the smallest closed set with full v-measure. It is easy to see that
S, ={zeB: v(V;) >0, for every open nbdV, of z}.

For a given measure v on B, S, will denote, throughout, the support of v; further, for any
set A C B, A and int(A) will denote the closure and the interior of A, repectively. For
an ¢ > 0 and z € B, A(z,¢) will denote the set {ye B, |ly — z|| < €}. Finally, for a set A
in R?,sp(A) and cc(A) will denote the smallest linear space and the smallest convex cone
generated by A, respectively.

Let u be an index 0 < a < 2 stable probability measure on R?. Then, as in well known,

for any 0 < 7 < 00, u can be written as
(1.1) p=26(a,)*p,

,where é(a,) denotes the Dirac measure at a,(u) = ar e R? and g, is the index o stable

probability measure with the characterstic (ch.) function

(1.2) ir(y) = exp/ / {e"<™¥> 14t I(t) <u,vy >}ia(du),
28, Jo (0,7] tite

yeR?, where A; = A(0,1), 8A, is the boundry of A; and ¢ is a finite measure on 8A,
( the 1measure o is refered to as the spectral measure y; this measure can and will be
assumed symmetric, if y is symmetric. Further, if 0 < a < 1 (resp. 1 < & < 2), then one

can write

(1.3) p = 6(ao) * po (resp. p = 6(aco) * poo),
2
A R Y M AR SRS -.;"';“".'”\"\"\"w" R S G *."'-s"_s':\“." N '.‘;\ LY \'\': .
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where ag, ao € R? and the ch. function of po (resp. of us) is given by (1.2) with A,

Ly 0 8

ey

-~
A

replaced by Ag = {0} (resp. by A, = R?). The prob. measure yy and po are index

'
.
E a strictly stable components of u in these two cases. For a given index a stable prob.
! .
' measure u on RY, the notation a,, y,, will always be used to denote the elements and the o
measures introduced in (1.1) and (1.2). R
X 2. The positivity of the density of stable measures on R9. IS
y 2
We begin by stating a result for the support of stable prob. measures on R%. Proofs of !
. L4
[ s
' part (a) can be found in [1,10] and that of part (b) in [8]; the proofs of these two results :
y 0,
) in the symmetric case werc given earlier in [6,7], for all 0 < @ < 2; and, for the case y
}
: l1<a<2inf2. R
y Y
THEOREM 2.1. Let u be an index 0 < a < 2 prob. measure on R?; and let §(a,) and u., o
~
]
be the component measures of u as in (1.1). Then we have the following: o
.
K
! (a) IfO0<a<l1, then 75
o "
(2.1) pr=8(b;) % po, Spr = b, +TS,) ‘_
\ : \
13 l-a
\ for every 0 < 7 < 00, where b, = (fav udo) (%) and which belongs to 3p (S, ); further, ‘-
H
Su,%¢(Ss) = 3p(Ss) for one and hence all 0 < 7 < oo if and only if S, oy~ ! = R, for L,
P every y € R?, for which y,oy~! is a non-degenerate measure on R.
. [ Sat
) -
[, (0) If 1<a<2, then
)
N
(22} Sir = K(S) 3
y Jfor every 0 < 7 < oo; further, if 1 < a < 2, then N
. -
B s
pr = 6(cr) * poo "$
-
3 kY.
"-I
, N
o 8 e e T S N R RS




, for every 0 < 7 < oo, where ¢, = ( [y, udU)(I;T_;) and which belong to sp(S,) (here

€eo = 0), therefore, in this case, (2.2) is valied for T = oo as well.

REMARK 2.2: Note that it follows immediately, from (1.1), (2.1) and (2.2) that
(2.3) S, =a, +3p(So),

if1<a<2 and

(2.4) Sy =ar + b, +¢c(S,),

if 0 < a < 1. Further, if p is symmetric, then if follows, from (2.2), (2.3), the symmetry

of o, and the facts that a, = b, = 6, that
(2.5) S, = 3K(S.)

The following lemma shows that every measure u, (see (1.2)), when restricted to a
suitable subspace of R?, has a bounded continuous density, this fact seems to be known
for quite some time. The folloiwng proof of this lemma is due to Kesten [4]; and included
here for completeness.

We will use the following additional notation throughout the note. If o is a finite mea-
sure on 04, then we shall denote €¢(S,) and 3p(S, ), respectively, by Co(c) and Ey(0).

Further, we shall supress o from these notations, whenever there is no likely confusion.

LEMMA 2.3. Let u, be the index a stable prob. measure on R® with the ch. function f,
given by (1.2), where it is assumed that T can take value 0 (resp. o), if 0 < a < 1 (resp.

1 <o <2). Then u,(Eo(c)) =1 and the ch. function of u,(restricted to Eo(c)) satisfies

(2.6) li-(y)] < e Klol®
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, for every y e Eq(0), where K is the real positive constant given by

K=[ inf / |<u,v>l°’a(du)} [/ (L:;ﬁj)ds}_
vfaA‘nEo(d) S.nEo(U) 0 S a

PROOF: That u,(Ep) = 1, follows from (2.1) and (2.2).

Clearly, for y € Ey, we have

2.7) la-(y) = exp[/s . {(cost <u,y> —l)tld_:a }a(du)] .

Fix yeE,y # 0, (fory = 0, (2.6) is obvious), then making the change of variable

t| < u,y > | =sin (2.7), one obtains

28)  toglin) = Iol [ [ 1<y > o] | [T (7 ) ).

where A, = {ueF :< u,y ># 0}. Next noting that o(A4,) > 0 (otherwise {ueE, : <
u,y >= 0} NS, will have a full o-measure and 3p(S,) C {ye Eo : < u,y >= 0}; which will

contradict the fact Sp(So) = E;), one observes that

¥(v) =/s . | < u,v > |%(du)

is positive on dA; N Ey and, as it is clearly continuous and S, N Ey is a compact set, we

have

y .
<u,=—— >|%(du)> inf ¥(v)=1(ve) >0,
[ 1w > @ 2t ) = ¥(oo)

for some vy € 9A; N Ey. Therefore, from (2.8),

. o *®[1—-coss
g e () 2~y wten) [ | 2522 as,

which proves (2.7).
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The above lemma immediately yields the following corollary.

COROLLARY 2.4: Let u, be the measure in Lemma 2.3; then yu, restricted to E¢(o) has a

continuous bounded density; (we shall denote this density, throughout by f,).

Now we are ready to prove the main result of this note.

THEOREM 2.4. Let u be an index a stable prob. measure on R? with spectral measure o.
Then we have the following:

(a) IO < a <1, then, for every 0 < 7 < oo, the (bounded continuous) density f,
of the measure u, (see (2.1)) restricted to E¢(o) is positive on the interior (in E) of the

translated cone C, = b, + Cy(0) and zero on E\C,; further, for every 0 < 1 < o0,

(2.9) fr(z) = fo(z - b;)

, for every z € Ey(0).
() I 1< a<?2, then, forevery 0 < T < 00, the (bounded continuous) density
f+ of p, (restricted to Ey(0)) is positive on Eg(0); further, if 1 < a < 2, the same is true

of fo and, in this case, for every 0 < 7 < o0,

fr(x) = foo(z - (Cr))

, for every z e Ey(0).

PROOF OF (a): From (2.1), we already know that (2.9) is valied. Next observe, by the con-
tinuity of f, and the fact S,, = C,, that f, = 0 on E\C,. Thus, noting that z e Int(C;)
if and only if z — b, € Int(Cy)( note Cy = ¢c(S,), as by = 0), the proof of (a) will be
complete if we can prove that fo is positive on Int(Cy). We prove this in the following:
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Let z e Int(C,), if ¢ = 0 then clearly Cy = Ey and one can use the argument of part
(b) to show that fo(0) > 0. So we assume z # 0, and set z, = 2'/°z; then, since z
is also an interior point of Cp, we can find an € > 0 such that A(zg,e) € Co. Now let
T, = (f)4ﬁfgﬂ and let 0 < ¢’ < £ be such that A(zy,e') € Cy = S,,. It follows, using

the continuity of fo, that there exists a y, e A(z;,¢’') and 0 < €; < ¢’ such that
(2.10) A(y1,€1) € A(zy,€') and fo > 0 on A(y,e1).
Next observe that A(zg —y;, €1) € A(z,6) € Co = S,,; in face, if ze A(zg —y1,€1), then
3
Iz = zoll < llz = (zo =yl + llys =21l + |72l < J e

(recalle;, < £). Hence, again using continuity of fo, we can find a zp € A(zg—y1,€1) and 0 <

e2(< €;) such that
(2.11) A(z0,€2) € A(zo — y1,€1) and fy > 0 on A(zp,¢€2).

Now A(zg,e2) C A(zg — y1,€1) clearly implies that A(zg — zp,62) € A(y1,€1); therefore,
since y € A(zp,€2) if and only if 2o — y € A(zp ~ 20,€2), it follows, from (2.10) and (2.11),

that

(2.12) fo(zo —y)fo(y) >0, forevery yeA(zp,e2)

Now using (2.12) and the following (which is a direct consiquence of strict stability of uo)

for ) = 27% fo(27% ),

24 fy(z) = / fo(zo — 9)f(y)dy 2 / folzo = y)foly)dy > 0.
Eo

A(O,Z:)
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(recall zo = 21\°<),

L e e o ae

PROOF OF (b): The basic idea of the proof here is similar to (b); if fact, this case is simpler,

3 because S, is a linear space. We give an outline of the proof for a = 1 First note that f,

R T T T TR R

satisfies (using stability property of u,)

(2.13) fr *fr(‘)=2_1fr(2—l(‘ —a)),

N R A\ -‘
v WA

for some ae Ey. Now let ¢ E : set s = 2z + a. Then from (2.13), one has

(2.14) ff*fr(30)=2-]fr(x)‘

X

o

; Since S,, = Ep and f, is continuous on Ejy, there exists an z, € E such that fr >0on

-'.l-\' A

AR

A(xy,¢€) for some € > 0. For the same reasons, we can find zg € A (zo — 7,,€;) such that

-.W W-\J 2"

fr > 0o0n A(zp,€2) C A(zo — z1,¢€1) for some €2 > 0. Then, clearly

5
G

fr(zo —y)fr(y) >0 forall yeA(z,e2)

; and, it follows, from (2.14), that f,(z) > 0.

Completing the proof.

REMARK 2.5: (a) Let u be as in Theorem 2.4; then it follows from the definition of support

and the theorem that p (restricted to some subspace of R?) has a density f, if and only

-

if a, (see (1.1)) belongs to Ey; and in the case when a, € Eg, p (restricted to Ep) has a

(unique) bounded continuous density f, on E,. In fact, for any fixed 0 < 7 < 00, fu(7) =

o
o
Y
L,
s
b.. ‘
>-_
:_,
o
!
L.
hd
b
)
~
o
)
-
l‘..
" 4

f+(z —a,), for all z e E, (where recall f, is the bounded continuous density of u,). Thus,
if 0 < a < 1, f, is positive on Int(a, + b, + Cy) and zero on the complement of this set;

and if 1 < a < 2, f, is positive on E,.
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(b) If p is symmetric, then it follows from (a) above and Remark 2.2 that u (re-

r-',:::?:-;

stricted to Ey) has a (unique) bounded continuous density which is positive on E,.

- @

qx_ v 5
t'.'-‘ \{
[#

(¢) Let o be the index 0 < a < 1 strictly stable prob. measurc on R? as in

/
o

e
..'I(‘l

]
N

Theorem 2.1 (a), and f; be the bounded continuous density of pg restricted to Ey (see

Theorem 2.4 (a)). Then, as noted in Section 1, it was shown by Kesten [4] that fo > 0

AT

vt P A
e "v"':"n 'l"‘- " &

on Int(cc(S,)), and by Taylor (9] that f; = 0 on E,\Int(cc(S,)). Since for a convex set

A C Ey, Int(A) = Int(A), these two results and the corresponding result for f, proved in

g
L
o

lI

Theorem 2.4 (a) are precisely the same.

~ ". 4%
. s

S RSN
) }:',’. 4 [

Recall that two prob. measures on R? are called equivalent (~) if they are mutually

L

absolutely continuous; and they are called singular (L) if they are concentrated on two

disjoint sets. The following theorem shows that two stable measure in RY, satisfying a

Oy
BN

mild hyposthesis, are either ~ of L. e

« 9"

%
[
ey e

THEOREM 2.6. Let 0 < a, 8 < 2; and let u and v be two stable prob. measures on R®

Ll

! AL AR
, N Y
» . 4
“

l"l""_..

with indices a and 3, and spectral measures o, and o, respectively. Assume Co(0,) = -

[ R
o

.
» 'u;-‘,

Eo(o,). if0 < a < 1, and assume the same hypothesis for Co(o,), if 0 < f < 1. Then

-
I"‘ L4
.l

s

e’

’Il
It

P

either p L v or p ~ v; and p ~ v if and only if E¢(a,) = Eo(0,).

e
Lo

&

ProoF: Using (1.1) with 7 = 1, write u = é(a;(u)) * 1y and v = é(a;(v)) * v1; and recall,

from (2.1) and (2.2), that -"3‘:‘

v % % i

A

“w Ta i
v,
«

Su=ai(p) + Eo(ou), S =ai(v) + Eo(0,)
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Now either S, # S, or S, = S,. We will show that if the first alternative holds then p 1 v
and if the second alternative holds then g ~ v.

Clearly, if S, # Sv, then either one of these two sets is properly contained in the other
or their intersection must be properly contained in both S, and S,. Suppose the first
possibility holds and say S, C S,; then a;(v) + Eo(0,) C a1(p¢) + Eo(04); and, hence
a)(v) —ai(u) + Eo(0,) is a translate of a proper subspace of E. Thus, since u; (restricted
to Eo(0,)) has a density, p({a,(v) — ai(¢) + Eo(0,)} = 0; ie, p{ay(v) + Eo(7,)} =
0. Therefore p{S,\S,} = 1and v(S,) = 1, and ¢ L v. Under the second possibility,

5,nS5,C€S,, and S,NS, CS,. Now
2.15) la1(v) + Eo(0,)] Nay(u) + Eo(0,)] = a+ Eg(o,) N Eg(o,)

where a is any element belonging to the left side of (2.15). Thus, a — a;(¢) + Eo(0,) N
Eo(0,) C E,(0,). Therefore, as before, u;[a — a; () + Eo(0,) N Eo(0,)] = pla+ Ep(a,) N
Eo(0,)] = 0 and v[a+ E¢(0,)N Eo(0,)] = 0 Hence u(S,\S,NS,) =1, v(S,\S,NS.) =1,
“~d again u 1 v.

IfS, =S5,S, then Eg(0,) = Eo(0,) = E (say); and, since y; and v, restricted to E have
positive density on E by Theorem 2.4, it follows y; ~ v, on E; hence y; ~ v, on RY. Now
let A be any Borel set of R? with u(A) = 0; then, since u(A) = p1(A—a;(g)) and u, ~ v,
we have v,(A — a,(pj) = 0. Nov observing that A — a;(u) = A — ay(v) + (ay(v) — a1 (p))

and that a,(v) — a;(u) € E, we have
(2.16) ni{(A-ai(v))NE+a,(v)+a,(p)} =0

but, since v; restricted to E is equivalent to ‘he Leb. measure on E, it follows from (2.16)
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that 4)(A4 — a;(v)) = O or ¥(A) = 0. Thus v << g, similarly 4 << v; completing the
proof.

REMARK 2.7: (a) If 4 and v in the above therorem are symmetric, then S, = Eo(0,) and
S, = Ey(0,) and hence by the above theorem either u L v or u ~ v, and g ~ v if and
only if S, = S,.

() If 0 < a,f <1andpyand v as in the above theorem, then, in general, even in
R!, the equivalance - singularity dichotomy for x4 and v may fail For example take u with
Sy =[0,00) and v = é{y) * p then S, = [1,00). Similar situation can prevail, even when
and v are strictly stable in R?, d > 2; in fact one can take u with S,={te':t>0,0<

}.

6 < %}and v with §, = {te*? : t >0, <0<

wla
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